×

polynomial space中文什么意思

发音:   用"polynomial space"造句
  • 多项式空间
  • polynomial:    adj. 1.【动、植】多词学名的。 2.【数学】多项式 ...
  • space:    n. 1.空间;太空。 2.空隙,空地;场地;(火车轮船 ...
  • polynomial:    adj. 1.【动、植】多词学名的。 2.【数学】多项式的。 n. 1. 【动、植】多词学名。 2. 【数学】多项式。 a polynomial expression 多项式。
  • polynomial of:    次多项式
  • addition of polynomial:    多项式加法
下载手机词典可随时随地查词查翻译

例句与用法

  1. Three special subspaces of ect spline space : polynomial space , the algebraic trigonometric spline space and hyperbolic spline space are investigated in detail . the generalized p lya polynomials , associated with the three subspaces , are calculated . both of boehm algorithm and oslo algorithm for the ect b spline curves of order 4 over the three special subspaces are displayed
    三、在多项式样条空间、代数三角样条空间和代数双曲样条空间这三个具体的ect空间上,给出了相应典范ect组和广义p lya多项式的计算和显示表示,展示了几个低阶ectb样条曲线各种插入节点算法的求解全过程
  2. Secondly , we introduce the recurrence definition of the non - uniform algebraic - hyperbolic b - spline basis using divided differences and the de boor - fix recurrence definition on polynomial functions , and based on the new forms , algebraic - hyperbolic b - spline curves are obtained . they share most of the properties as those of the b - spline curves in the polynomial space . we focus on deducing the calculating and knot inserting formulae for this new kind of curves and then prove that they have the variation diminishing properties
    二、利用广义差商,基于多项式b样条的deboor - fix递推定义,给出了任意阶非均匀代数双曲b样条的递推定义,由此构造曲线,证明它的几何不变性、仿射不变性、凸包性、 v . d .性等,重点给出了非均匀代数双曲b样条曲线的递归求值和节点插入算法,算法简单且稳定,便于在计算机上实现

相关词汇

其他语言

        polynomial space перевод:полиномиальное пространство (памяти) (характеристика сложности алгоритма)

相邻词汇

  1. polynomial remainder sequence 什么意思
  2. polynomial remainder theorem 什么意思
  3. polynomial representation 什么意思
  4. polynomial ring 什么意思
  5. polynomial solution 什么意思
  6. polynomial structure 什么意思
  7. polynomial surface 什么意思
  8. polynomial system 什么意思
  9. polynomial theorem 什么意思
  10. polynomial time 什么意思
桌面版繁體版English

相关阅读

Copyright © 2025 WordTech Co.

Last modified time:Mon, 18 Aug 2025 00:29:56 GMT